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Massive production of single-crystal metals has been a long
pursuit in materials science and engineering due to their superior
electrical, thermal and mechanical performances compared with
polycrystalline ones. Single-crystal metal ingots could be tradition-
ally fabricated by the Czochralski technique, and large-size single-
crystal metal foils (with thickness limited to several tens of micro-
meters) have been recently prepared by the designed thermal
annealing of polycrystalline ones [1–4]. However, for the thicker
single-crystal metal foils or plates, the economic and efficient pre-
paration has not yet been achieved. In principle, epitaxial electro-
deposition of metal on single-crystal substrates provides an
economic and efficient way to achieve highly ordered metal films
[5–9]. However, as the electrodeposition goes on, the number of
defects increases and lattice twinning occurs more easily, which
leads to the structure transition to polycrystals [5,6]. Consequently,
epitaxial electrodeposition on single-crystal substrate was
reported to only reach several-micrometer-thick single-crystal
films, even the epilayer and the substrate are of the same lattice
structure [7–9]. Hence, a new strategy needs to be developed to
regulate the electrodeposition process for the preparation of thick
single crystals.
In this work, we demonstrated the electrodeposition of single-
crystal Cu with thickness up to millimeters on high-index single-
crystal Cu foils. The electrodeposition was carried out with poly-
crystalline Cu plates as anodes and high-index single-crystal Cu foil
(�25 lm, obtained by the designed thermal annealing [4]) as cath-
ode (Fig. 1a, see Method in Supplementary materials and Fig. S1
(online) for more details). Fig. 1b shows a �100 lm-thick elec-
trodeposited Cu plate with single-crystal Cu(211) foil as cathode
(the thickness of the deposition layer on each side, Dt, is �38
lm). We first used X-ray diffraction (XRD) to characterize the crys-
tal orientation of the deposition layer. The XRD 2h-scan results
show that the out-of-plane orientation of the deposition layer is
the same as the Cu(211) substrate (Fig. 1c). In the XRD azimuthal
off-axis / scan, only one peak corresponding to Cu(200) was
observed, indicating the single-crystal structure without in-plane
rotation (inset in Fig. 1c). Electron back-scattered diffraction
(EBSD) was also carried out and uniform colors of the inverse pole
figure maps in the Z and Y directions (IPF Z and IPF Y) demonstrate
the deposition layer is indeed a single crystal (Fig. 1d). The atomic
resolved high angle annular dark field scanning transmission elec-
tron microscopy (STEM) image confirms the lattice structure of the
Cu(211) (Fig. 1e). All above results have verified that the deposition
layer on Cu(211) is single-crystal.

We also characterized the electrical and mechanical properties
of the single-crystal Cu plates to demonstrate their single-crystal
nature and evaluate their quality. As shown in Fig. 1f, our prepared
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Fig. 1. (Color online) Electrodeposition of single-crystal Cu plates and their structural and properties characterizations. (a) Schematics of electrodeposition on single-crystal
Cu foil, where the polycrystalline Cu plates are used as anodes and high-index single-crystal Cu foil as cathode. (b) Photograph of the electrodeposited Cu plate. (c) XRD 2h
scan spectra for the Cu(211) substrate and the electrodeposited Cu plate, respectively. Inset, azimuthal off-axis / scan spectrum for the electrodeposited Cu plate with only
one peak corresponding to Cu(200). (d) Representative EBSD IPF maps of the electrodeposited plate in the Z (top, along the thickness direction) and Y (bottom) directions,
respectively. (e) Atomically resolved STEM image of the electrodeposited plate. (f) Room temperature electrical conductivity of single-crystal Cu plates and four kinds of
commercial electrolytic polycrystalline products. (g) Typical tensile stress-strain curves for the single-crystal Cu plate and two kinds of commercial electrolytic
polycrystalline products. The thickness of the all specimens in (f, g) is of �100 lm. (h) Fatigue performance for our electrodeposited single-crystal and polycrystalline Cu with
different thicknesses, and four kinds of commercial electrolytic polycrystalline Cu products (�100 lm thick).
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single-crystal samples have the highest electrical conductivity up
to 103.2% of international annealed copper standard (IACS) com-
pared with those of the commercial polycrystalline ones (typically
98%–100% IACS). The electrical conductivity enhancement origi-
nates from the absence of grain boundaries in single crystals,
which reduces the electrons scattering by disordering and surface
roughness [10].

We then compared the mechanical properties of the electrode-
posited single-crystal Cu to the commercial polycrystalline ones.
Before testing, all samples (�100 lm) were subjected to the same
1612
thermal annealing process. The microstructures of 4 kinds of poly-
crystalline Cu after thermal annealing were characterized by EBSD,
showing coarse grains with the size of several hundred micro-
meters and various crystallographic orientations (Fig. S2 online).
Tensile tests were first carried out and representative tensile
stress-strain curves for different samples are shown in Fig. 1g.
The tensile test of the electrodeposited single-crystal sample was
conducted along its <112> direction (the crystallographic direction
was determined by EBSD characterization, as shown in Fig. S3
online), and it exhibited excellent ductility that the elongation-
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to-fracture was as high as 108%, about 4 times of those of commer-
cial ones. This is because in coarse-grain metal polycrystals, the
uneven deformation between grains is difficult to coordinate, and
cracks may form at the grain boundaries and lead to fracture easily,
displaying inferior plasticity compared to the single crystal.

In terms of yield strength and ultimate tensile strength, there is
no obvious difference between our prepared single-crystal samples
and commercial ones for little grain boundary strengthening in
coarse-grains polycrystalline Cu foils [11]. As for elasticity, due to
the small specimens and small elastic strain of Cu (<5‰), it is
extremely difficult to measure the displacement accurately in the
elastic deformation region in the tensile test, leading to large error
in calculating Young’s modulus. But under the same test condi-
tions, the obtained Young’s modulus of single crystal is smaller
than that of polycrystals, which can be ascribed to the anisotropy
of single crystal [12].

The fatigue performances of our prepared samples were also
evaluated (see Methods section in Supplementary materials
online for more details). As shown in Fig. 1h, the numbers of
cycles to failure follow similar trends for both the single-
crystal and polycrystalline samples as their thickness increases,
where they first climb up and then decline with the reflection
point at the thickness of 60–70 lm. Thinner samples have better
flexibility, while their fracture strength is also lower. Thus when
the thickness of the sample is small enough, their folding endur-
ance performance starts to degrade [13]. Obviously the single-
crystal samples have much better fatigue performance than the
polycrystalline ones in the whole thickness range. In addition,
we tested the fatigue performance of commercial samples
(�100 lm) and obtained similar results to our prepared poly-
crystalline samples.

To illustrate the mechanism of epitaxial electrodeposition of
single-crystal Cu, we compare the different deposition behaviors
on Cu(111) and Cu(211) in Fig. 2a. The surface of Cu(111) can be
considered to have atomic flatness and the epitaxial deposition
occurs by the two-dimensional (2D) nucleation and three-
dimensional island growth [14]. During the process, the nuclei
with parallel and anti-parallel orientations may form due to
the small energy difference on (111) plane (Fig. S4 online) [5].
Meantime when the islands meet, they cannot always merge
together perfectly, leading to faults formation, which may fur-
ther induce the lattice twinning and lead to twin crystal forma-
tion (Fig. 2a, upper panel). On the other hand, the deposited Cu
atoms could directly diffuse to the atomic step edges on Cu(211)
and attach on them and there is no nucleation stage during the
electrodeposition on Cu(211) [15]. The interaction between Cu
atoms and the step edges is much stronger, under which the
Cu atoms could order themselves to duplicate the lattice
arrangement of the substrate completely, which is the most
energetically favorable. Although under our electrodeposition
condition, the deposited Cu also follows the island growth, faults
formation is less possible in such step-guided island growth
mode (Fig. 2a, lower panel). The distinct island morphologies
and growth behaviors on Cu(111) and Cu(211) at early deposi-
tion stage shown in scanning electron microscopy (SEM) images
(Fig. S5 online) confirm this step-guided island growth and the
advantageous effects of Cu(211) surface atomic steps on the epi-
taxial electrodeposition. Furthermore, SEM images taken when
the samples were tilted by 70� show that the deposition layer
on Cu(211) has a smoother surface compared to that on Cu
(111) (Fig. 2b), which may also benefit from the step-guided
deposition. The detailed mechanism needs further theoretical
exploration and it should provide a new direction to produce
low-profile electrolytic copper foil.
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To consolidate the robust single-crystal duplication behavior
during the whole electrodeposition process, we also conducted
the EBSD characterization of the cross section of the electrode-
posited Cu plate (145 lm) with Cu(211) as substrate. The uniform
contrast in the vicinity of the Cu(211) surface and the purple color
across the entire thickness in the IPF mapping along Y direction
demonstrate that the deposition layers are single-crystal and have
the same lattice orientation as the substrate (Fig. 2c, d).

We further tried to prepare thicker Cu plates. Surprisingly, as
the thickness is up to �600 lm, the Cu plate still remains to be
single-crystal, indicating by the single orientation in the (100) pole
figures (Fig. 2e, upper panel) as well as the IPF mapping along Z and
Y direction and the XRD results (Fig. S6a–c online). On the other
hand, when using Cu(111) as substrate, as the total thickness of
the Cu plate increases, twin crystals and polycrystals will appear
sequentially in the structures of electrodeposited layers (Fig. 2e
lower panel and Fig. S6d–i online). Actually, the twinning already
occurs in the 50 lm-thick Cu(111) plate.

Lastly, we investigate what is the maximum thickness of the
single crystals that can be prepared on single-crystal Cu sub-
strates with atomic steps on the surface. The transition from sin-
gle crystal to twin- or polycrystals can be ascribed to the
cumulation of defects during the epitaxial electrodeposition
[5,6]. Thus, reducing defects formation can effectively increase
the thickness of single-crystal deposition. From this point, we
speculate that the surface quality of single-crystal Cu substrate,
current density and purity of plating solution may determine
the maximum thickness. We conducted controlled experiments
to show the effects of the substrate surface quality, current den-
sity and purity of electrolyte on the maximum thickness. The
results demonstrate poorer substrate quality, higher current den-
sity and/or lower-purity electrolyte would lead to easier transi-
tion from single crystal to polycrystals, and largely reduced
thickness of single crystal (Fig. S7 online). By consistent efforts
to optimize these experimental conditions, currently we have
obtained a single crystal with thickness of �3.3 mm on a vicinal
Cu(110) substrate, which also has the surface with atomic steps.
This maximum thickness is determined by our current experi-
mental conditions and might be much larger in a more suitable
electrodeposition environment.

In principle, this step-guided single-crystal duplication should
in principle be applicable to the electrodeposition of Cu on other
high-index Cu single crystal as well. Here we present three exam-
ples in Fig. 2f–h, with EBSD results verifying the single crystallinity
of the Cu plates (each with thickness of �100 lm), proving the
validity of our proposed robust single-crystal duplication
mechanism.

In summary, we have demonstrated the step-guided single-
crystal duplication on high-index Cu, where the step edges interact
with electrodeposited Cu atoms and guide them to position at the
intended sites, to prepare large-size thick single-crystal Cu plates
by electrodeposition. The obtained single-crystal Cu plates exhibit
obvious improvement in the electrical conductivity, ductility and
fatigue performance compared with the commercial electrodepos-
ited polycrystalline ones. With these superior properties, we
anticipate that our prepared single-crystal Cu plates may have
potentials in high-speed and high-power electric applications.
More importantly, the proposed mechanism of step-guided
single-crystal duplication may also be suitable to produce other
metal single crystals.
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Fig. 2. (Color online) Step-guided single-crystal duplication on high-index single-crystal Cu substrate. (a) Schematics of the different deposition behaviors on Cu(111) and Cu
(211). (b) The distinct surface morphologies of electrodeposited Cu on Cu(111) (top, �120 lm-thick) and Cu(211) (bottom, �130 lm-thick) substrates, respectively. The
cross-sectional SEM (c) and corresponding EBSD IPF Ymap (d) of the electrodeposited Cu(211) plate (�145 lm-thick). The normal direction of the IPF Ymap is the same as the
thickness direction of the electrodeposited foil. (e) Crystal structure evolution of the electrodeposited layers on Cu(211) and Cu(111) substrates as the electrodeposit
thickness increases. (f)–(h) EBSD IPF maps in the Z (top, along the thickness direction) and Y (bottom) directions of the electrodeposited Cu single-crystal plates (�100 lm-
thick) with the facet indices of (355), (221), and (331), respectively.
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